
162 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Game Bot Detection via Avatar Trajectory Analysis
Hsing-Kuo Pao, Kuan-Ta Chen, Member, IEEE, and Hong-Chung Chang

Abstract—The objective of this work is to automatically detect
the use of game bots in online games based on the trajectories of
account users. Online gaming has become one of the most pop-
ular Internet activities in recent years, but cheating activity, such
as the use of game bots, has increased as a consequence. Gener-
ally, the gaming community disapproves of the use of bots, as users
may obtain unreasonable rewards without making corresponding
efforts. However, game bots are hard to detect because they are de-
signed to simulate human game playing behavior and they follow
game rules exactly. Existing methods cannot solve the problem
as the differences between bot and human trajectories are gen-
erally hard to describe. In this paper, we propose a method for
detecting game bots based on some dissimilarity measurements
between the trajectories of either bots or human users. The mea-
surements are combined with manifold learning and classification
techniques for detection; and the approach is generalizable to any
game in which avatars’ movements are controlled by the players
directly. Through real-life data traces, we observe that the trajec-
tories of bots and humans are very different. Since certain human
behavior patterns are difficult to mimic, the characteristic can be
used as a signature for bot detection. To evaluate the proposed
scheme’s performance, we conduct a case study of a popular on-
line game called Quake 2. The results show that the scheme can
achieve a high detection rate or classification accuracy on a short
trace of several hundred seconds.

Index Terms—Behavior analysis, bot detection, cheating, mani-
fold learning, online games, similarity measure, trajectory.

I. INTRODUCTION

T HE objective of this work is to automatically detect the
use of game bots in online games based on the trajecto-

ries of account users. Although humans can easily detect game
playing bots, as exhibited in the competition The 2K BotPrize,1

it is shown to be difficult to design an automatic mechanism for
detecting such bots [1], [2]. By analyzing the behavior patterns

Manuscript received November 20, 2009; revised May 26, 2010; accepted
August 16, 2010. Date of publication September 02, 2010; date of current ver-
sion September 15, 2010. This work was supported in part by Taiwan Informa-
tion Security Center (TWISC), National Science Council under Grants NSC98-
2221-E-011-105 and NSC98-2219-E-011-001 and in part by Taiwan E-learning
and Digital Archives Programs (TELDAP) sponsored by the National Science
Council of Taiwan under Grants NSC98-2631-001-011 and NSC98-2631-001-
013.

H.-K. Pao is with the Department of Computer Science and Information En-
gineering, National Taiwan University of Science and Technology, Taipei 106,
Taiwan (e-mail: pao@mail.ntust.edu.tw).

K.-T. Chen is with the Institute of Information Science, Academia Sinica,
Taipei 115, Taiwan (e-mail: ktchen@iis.sinica.edu.tw).

H.-C. Chang was with the Department of Computer Science and Informa-
tion Engineering, National Taiwan University of Science and Technology, Taipei
106, Taiwan. He is now with the Institute for Information Industry (III), Taipei
10622, Taiwan (e-mail: chz1971@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2010.2072506

1http://botprize.org/

hidden in the trajectories, we want to determine whether an un-
seen input is a bot or a human user. Online gaming is now one
of the most popular Internet activities; however, as the popula-
tion of online gamers has increased, game cheating problems,
such as the use of game bots, have become more serious. Game
bots are automated programs, with or without artificial intelli-
gence, which help players enhance, accelerate, or bypass some
routines in a game. For example, in first-person shooter (FPS)
games, users can employ bots to play in place of themselves
in order to get high scores and gain a reputation in the com-
munity. Similarly, in massively multiplayer online role player
games (MMORPGs), players can save a great deal of time by
using bots to perform repetitive tasks, such as slashing low-level
monsters, or fishing in a river to master the avatar’s fishing skills
[1]. The use of bots in MMORPGs is notoriously related to “gold
farming” [3], wherein bots are used to harvest the resources in
the game world, accumulate the experience points and fortune
for game characters, and later sell the resources and even the
characters (and the associated accounts) to genuine players in
exchange for in-game currency or real-world money. This phe-
nomenon often annoys honest users as it erodes the balance and
order of the game world, where bot users and the customers of
gold farmers can monopolize scarce resources and easily out-
perform honest users in terms of economics and military force.
This problem is second only to account theft [4] in their impact
upon such games.

Generally, the gaming community disapproves of the use of
game bots, as bot users obtain unreasonable rewards without
corresponding efforts. However, game bots are hard to detect
because they are designed to simulate human game playing be-
havior and they follow game rules exactly. Some bot detection
studies [2], [5], [6] propose using CAPTCHA tests during a
game to determine whether an avatar is actually controlled by a
person. Although this method is effective, it disrupts the game
play and degrades players’ feelings of immersion in the virtual
world [7], [8]. Alternatively, passive detection approaches, such
as schemes based on traffic analysis [1] and schemes based on
avatars’ shooting accuracy in FPS games [9], have been pro-
posed. The drawbacks of these schemes are that the former as-
sumes a game bot works as a standalone client, while the latter
are only suitable for detecting aim bots in shooting games.

In this paper, we propose a general approach for all genres of
games in which players control an avatar’s movements directly.
Taking the avatar’s movement trajectory as the input, we adopt
a learning method for bot detection. By analyzing a trajectory,
we determine whether a behavior pattern belongs to a partic-
ular player and can therefore be taken as the signature of the
player. The rationale behind our approach is that the trajectory
of an avatar controlled by a human player is hard to simulate.
Players control the movement of avatars based on their knowl-
edge, experience, intuition, and a great deal of environmental

1943-068X/$26.00 © 2010 IEEE

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 163

information provided in the game. Since human decisions are
sophisticated and depend on multitudinous observable and un-
observable factors, how to model and simulate realistic move-
ments is still an open question in the AI field.

To detect game bots, it is necessary to summarize the informa-
tion about the behavior pattern hidden in the avatar’s trajectory.
Then, the pattern can be used as a signature for bot detection
based on classification techniques. Treating the trajectory as a
long series of 2-D or 3-D coordinates (depending on whether
the game is 2-D or 3-D) may be unwise, as the data lies in a
very high-dimensional space and we may face the curse of di-
mensionality problem [10]. Alternatively, we can transform the
trajectory into a pattern in a low-dimensional feature space and
detect bots in that space. We propose two dissimilarity measures
to describe the relationships between trajectories, and combine
the measures with a manifold learning approach called Isomap
[11] for dimension reduction. Then, we use the trajectories rep-
resented in the low-dimensional space as input for classification
and bot detection.

A naive approach takes the Euclidean distance as the dissim-
ilarity measure between two sets of trace data. However, the
proposed dissimilarity measures achieve more robust detection.
The first measure is based on the Kullback–Leibler (KL) di-
vergence [12] between two step-size distributions derived from
trajectories. The second considers the temporal information by
building associated Markov chain models of the sequences. It
then assesses how well one sequence is described by the model
associated with the other sequence to determine their distance/
dissimilarity. In this work, each trace is described by a con-
tinuous-valued Markov chain with Gaussian-distributed transi-
tions on step-size changes and angle changes. If two traces are
similar, we expect to find a short description code of one trace
given the model for the other trace, and vice versa. We adopt
Quake 2 as our case study because it is a classic and popular
FPS game, and many real-life human traces are available on the
Internet. Therefore, we can use such traces to validate our pro-
posed scheme.

The contribution of this paper is threefold. 1) We propose
using a manifold learning framework to detect game bots based
on avatars’ trajectories. The model is generalizable to any game
in which avatars’ movements are controlled by the players di-
rectly. 2) We study two novel dissimilarity measures between a
pair of trajectories for robust trajectory representation and bot
detection. 3) Based on real-life human traces, the performance
evaluation results show that the scheme can achieve a detection
accuracy of 98% or higher on a 700-s trace. As it is difficult to
simulate human players’ logic and determine how they control
game characters, we believe that this approach has the potential
to distinguish between human players and automated programs
and thus merits further investigation.

The remainder of this paper is organized as follows. Section II
contains a review of related works. In Section III, we introduce
our case study game Quake 2 and describe the game trace col-
lection methodology. Section III-A details some basic observa-
tions about trace data belonging to bots and human users. In
Section IV, to detect game bots, we consider two dissimilari-
ties or differences between the trajectories of different types of
players and combine them with a manifold learning method-

ology for data representation and classification. In Section V,
we evaluate our approach’s performance based on different dis-
similarity measures and input traces of different length. Then,
in Section VI, we summarize our conclusions.

II. RELATED WORK

In recent years, a number of studies have employed ma-
chine learning techniques to detect or simulate bots in online
games. For example, Yeung et al. [9] proposed using a dynamic
Bayesian network (DBN) to model the aiming accuracy for
aimbot detection in FPS games. In a DBN, the aiming accuracy
depends on whether the player is cheating, whether the player
or the target is moving, the aiming direction, and the distance
between the player and the target. Since the possibility that a
player is cheating is a random variable, the authors modeled it
by a Markov chain. The model can detect cheaters with a high
degree of accuracy, but it can only be applied to aimbots. Kim et
al. [13] proposed detecting auto programs in MMORPGs based
on the window events, which are generated by a player’s key
strokes, mouse clicks, and mouse movements. The events are
collected during game play and used to compute statistics like
the mean and standard deviation of the counts of certain events
at regular intervals. Then, various classification schemes, such
as the decision tree, the -nearest neighbor (-NN) classifier,
the multilayer perceptron network, or the naive Bayesian clas-
sifier, are applied to determine whether automated programs
are being used. Because of the high level of regularity exhibited
by such programs, the window-event-based approach performs
well irrespective of the classification method used.

Thurau et al. [14] attempted to create human-like game
agents with machine learning approaches. They classified the
behavior of human players into two categories: perceptions
and reactions. The former includes a player’s environmental
information like the avatar’s position and the distance between
the avatar and nearby opponents; the latter includes a player’s
actions, such as the avatar’s movement velocity and direction.
Using the information from both categories, the authors created
automatic human-like game agents. A number of learning
approaches have been exploited in a series of papers by the
same research group, including self-organizing maps [15],
manifold learning [16], Bayesian networks [17], and waypoint
maps [14], [18]. Equipped with these learning techniques, the
proposed game agents can imitate human behavior very well
compared to traditional rule-based game agents. However,
the manifold learning approach in [16] only performs 3-D to
2-D mapping. We doubt that the curse of dimensionality (e.g.,
[10]) will arise in this case. Instead, in this work, based on
avatars’ movement trajectories, we apply a manifold learning
framework with more than 200 original dimensions to detect
the use of game bots.

A number of approaches for measuring the dissimilarities or
differences between a pair of sequential traces have been pro-
posed. For example, Keogh et al. [19] considered parameter-free
descriptions of sequential data, while Pao et al. [20] studied
the distance function between biological sequences. Both fol-
lowed the work of Li et al. [21], who used the Kolmogorov
complexity [22] to describe sequential data. Generally, the Kol-
mogorov complexity cannot be computed but some compres-

164 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 1. Screen shot of Quake 2.

sion methods [20] can be used to approximate it.2 The above
methods only consider sequences of categorical values, so they
cannot be applied directly to our problem, which takes inputs
of numerical values. Lin et al. [23] proposed a symbolic rep-
resentation called symbolic aggregate approximation (SAX) to
deal with numerical valued time series. The key step of SAX in-
volves discretizing continuous valued inputs to produce an ap-
proximate representation of the original inputs. The method has
been applied successfully to many time series problems; how-
ever, in our case, it would be unnatural to use it to produce dis-
cretized data and compute the dissimilarity measures that are
again in the continuous domain.

III. DATA DESCRIPTION

In this section, we describe our case study game Quake 2 and
the procedures used to collect the game traces. We also analyze
the navigation patterns in different traces.

1) Quake 2: Quake 2 is a famous FPS game developed by
id Software [24]. In FPS games, a player adopts the role of a
particular character and shoots his enemies via the user inter-
face shown in Fig. 1. Multiple players can participate in a game
simultaneously, and they can cooperate to complete a mission.
However, death-match games, in which each player tries to kill
as many other participants as possible, are much more popular.
Quake 2 was nominated “The Best Game Ever” by PC Gamer
in 1998, and went on to sell over one million copies [25]. One
reason for the game’s popularity is that it is easy to customize,
and a large number of maps, player models, textures, and sound
effects are available on the Internet. The game has been ported
to many platforms other than PCs, for example, Nintendo 64,
Playstation, Amiga PowerPC, and Xbox 360.

2) Human Traces: Quake 2 supports a game-play recording
function that keeps track of every action and movement, as well
as the status of each character and item, throughout the game.
With a recorded trace, one can reconstruct a game and review
it from any position and angle desired with VCR-like opera-
tions. Players often use this function to assess their performance

2In fact, the Kolmogorov complexity and various definitions of entropy share
similar properties. More details can be found in [12] and [22].

TABLE I
TRACE SUMMARY

and combat strategies. Moreover, experienced players are en-
couraged to publish their game-play traces as teaching materials
for novice gamers and thereby build a reputation in the gaming
community.

To ensure that our game traces represented the diversity of
Quake players, we only used traces that players had contributed
voluntarily. The traces were downloaded from the following
archive sites: GotFrag Quake,3 Planet Quake,4 Demo Squad,5

and Revilla Quake Site.6 We mainly focus on the traces from
the map called The Edge, one of the most well-known levels in
death-match play. At this level, each player’s sole goal is to kill
as many other players as possible, until the time limit is reached.
Traces on other maps called The Frag Pipe and Warehouse were
also studied. However, the data sizes are relatively small and
only presented in a supporting role.7 In Section V-D, we study
the detection power crossing different maps. As short traces con-
tain little information, we only collected traces longer than 600
seconds.

3) Bot Traces: There are many game bots available for Quake
2. For this study, we selected three of the most popular bot pro-
grams for trace collection, namely CR Bot 1.14 [26], Eraser Bot
1.01 [27], and ICE Bot 1.0 [28].

To collect the game bot traces, we set up experiments on our
own Quake server and ran a number of game bots to fight each
other. The experiment setup was as follows.

1) In each game, 2–6 bots were selected at random to fight
each other. Each session spanned 20 h.

2) The game trace was recorded at the server using the server
record command.

3) The game’s catch-the-flag mode was turned off, so the
game bots continued fighting each other until the server
shut down. The cheating mode was also disabled.

4) The AI levels of CR Bots and Eraser Bots were randomly
set from 0 to 9 and 0 to 3, respectively.

We collected 1306 h of raw traces. Then, from each trace, we
took the first 1000 s, the middle 1000 s, and another 1000 s near
the end to compile our data set.8 In total, we collected 143.8 h of
trace data, as shown in Table I. The CR Bots, Eraser Bots, and
all human players were active most of time (89%). The ICE

3http://www.gotfrag.com/quake/home/
4http://planetquake.gamespy.com/
5http://q2scene.net/ds/
6http://www.revilla.nildram.co.uk/demos-full.htm
7We show the result on The Edge map unless otherwise specified.
8We assume that the sections at the beginning, in the middle, and near the

end of a trace are dissimilar, and can thus be considered as different samples. In
this way, we can create more useful data items as input for our learning scheme;
however, this preprocessing is not essential for our scheme to work properly.

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 165

Fig. 2. Aggregated trajectories on The Edge map, for players belonging to the
following groups: (a) human, (b) CR Bot, (c) Eraser Bot, and (d) ICE Bot. The
figure shows that the routing of bot traces is more predictable than that of human
traces, especially for the cases of CR Bot and Eraser Bot. Note that the bottom
left-hand side corner of the CR Bot navigation map in (b) shows no bot presence.
It may be difficult for some bots to visit the narrow area with a poor routing
algorithm. We also have similar results for the trajectories obtained in The Frag
Pipe map and Warehouse map (results not shown).

Bots were less active because they often remained idle in some
places waiting for an opportunity to ambush other players.

A. Navigation Patterns and Preliminary Analysis

Next, we compare the avatar trajectories of human players
and game bots based on certain observations. We consider the
navigation patterns of different types of players. First, we ana-
lyze their aggregated navigation patterns and then, the patterns
of individual trajectories.

1) Aggregated Navigation Patterns: We construct the aggre-
gated navigation pattern of each player type by plotting all the
observed coordinates in all traces of the particular player type on
a map, as shown in Fig. 2. The high density areas in each figure
are the places that players visit more frequently, while the sparse
areas represent buildings, other types of obstacles that players
cannot pass, or just areas that players are not interested in vis-
iting. The figures show that the game level is formed by squares,
plazas, and narrow alleys. This arrangement is designed specif-
ically for death-match play, as the winding routes provide cover
for players to hide, and the narrow alleys lead to intense fighting
if players confront each other in these confined places. We ob-
serve that, even though all the movement traces were collected
on the same map, the navigation patterns of different types of
players are dissimilar. We summarize the differences below.

1) Human players tended to explore all areas on the map; thus,
Fig. 2(a) shows the most complete terrain of the level. In
contrast, the routing algorithms used by game bots may
have had difficulty navigating certain places, so they never
visited some parts of the map. For example, the bottom left-
hand side corner of the CR Bot navigation map in Fig. 2(b)
does not indicate any visits.

2) To reduce the probability of being attacked, human
players normally avoid open spaces. Therefore, as shown

in Fig. 2(a), human players avoided the plaza in the middle
of the map, and stayed in the surrounding alleys instead.
This is indicated by the high density of plots in the alleys.
In contrast, game bots often stayed in the plaza, probably
because it is a large space and it is easy to get everywhere
from this area based on a simple routing algorithm.

3) Even though human players spent most of their time in
narrow areas and confined spaces, there were large vari-
ations in their trajectories. There are two reasons for this
phenomenon. a) The main routes are quite wide, so players
move irregularly within the space rather than stay in the
middle of a route. This may be due to players’ preferences;
hence, some players may move along the wall of the path,
while others may walk straight, unless the avatar is blocked
by a wall or other obstacles. b) As fights may occur any-
time, anywhere, human players often move strategically
to dodge current or potential attacks. In contrast, we find
that the game bots adopt very different movement patterns
over the routes. The movement paths of CR Bot and Eraser
Bot [Fig. 2(b) and (c), respectively] are dense and easy
to identify. This suggests that these bots tend to follow
exact movement patterns when moving through the same
alley. However, ICE Bot [Fig. 2(d)] exhibits a nearly uni-
form distribution over all possible points on the map. This
implies that its routing algorithm decides the avatar’s di-
rection rather than its exact movement pattern, so that the
probabilities of all points on the route are almost equiva-
lent.

Clearly, the difference between the bots’ routing patterns and
those of human players explains the different aggregated pat-
terns on the map.

2) Individual Trajectories: Having analyzed the aggregated
navigation patterns of the different player types, we now ex-
amine their individual trajectories. We manually select a repre-
sentative trace for each of the four player types (a human player
plus three game bots). The avatar trajectory of each selected
trace is shown in Fig. 3.

Even if we only observe one trace at a time, the difference
between the player types is still apparent. Our observations
about the aggregated navigation patterns still hold. Specifically,
the narrower a place is, the higher the probability that human
players will stay in that place, which is the opposite of the
game bots’ behavior patterns. Moreover, human players’ tra-
jectories contain much more irregularity and turns than those of
bots. There are two possible explanations for this: 1) irregular
moves reduce the chances of being attacked from behind; and
2) human decision making can be erratic and thus may not
be logical all the time. A human player may change his/her
mind any time and adjust the character’s step and direction,
basing the decision on unpredictable factors. In contrast, bots’
trajectories are mostly characterized by straight and long paths.

The differences between the movement patterns of human
players and game bots provide the conceptual framework
for our trajectory-based behavior analysis and bot detection
scheme. Even though bot developers may counter the detec-
tion algorithm by training bots to mimic human behavior,
we argue that certain human behavior traits are difficult to
emulate. While game bots’ fixed movement patterns can be

166 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 3. (a)–(d) Game-play trajectories of a human player and three bot players in The Edge map; (e) and (f) game-play trajectories of an Eraser bot in The Frag
Pipe map and in Warehouse map, respectively. The bots’ trajectories exhibit less randomness/irregularity than the human’s trajectory.

made more flexible by incorporating randomness into the nav-
igation logic, evaluating whether a place is “dangerous” can
be nontrivial. For example, human players tend not to stay
in the central plaza on the map and thereby they reduce the
probability of being attacked; however, it is difficult for game
bots to “sense” the environment and “decide” to avoid staying
in the plaza. Therefore, we believe that bot detection schemes
based on avatar trajectories would be robust to bot developers’
countermeasures. (This assumption is supported by the empir-
ical study discussed in Section V-C.)

In summary, bot patterns are more regular than human pat-
terns, and it is easier to predict whether a bot will go to a par-
ticular location than is the case with a human user. We use this
observation as the basis for simple discriminant analysis. If we
use a binary random variable to describe an event where a
trace touches a location within a certain period, we can com-
pute the entropy of the random variable by

The entropy values of human traces should be higher than
those of bots, given a prespecified period. We test our conjec-
ture on of 10 000-s traces9 of The Edge, the map mentioned at the
beginning of this section. Formally, we partition the original 2-D
map into grids with a fixed size of 20 units, and count the number
of times the trace visits each grid. We then normalize the total
number to between 0 and 1 as the distribution (divided by the
number of steps taken by the avatar or 10 000 in this case), and
compute the entropy of the distribution. In this way, we obtain
the entropy of each location for each trace; and we can use the
average entropy of a map as the discriminant to distinguish bots
from human users. We use 80% of the traces as training input

9We choose a trace longer than 1000 for better visualization effect and better
performance based on entropy computation, which implies that the entropy
computation is not as effective as the methods proposed in this paper.

TABLE II
SUMMARY OF HUMAN AND BOT ENTROPY VALUES. THE DECISION

THRESHOLD BETWEEN HUMAN AND BOT PLAYERS IS SET AS

THE MIDPOINT OF THE AVERAGE ENTROPY VALUES OF

HUMAN AND BOT USERS; I.E., WE CHOOSE

����� � ������	
 ���� AS THE THRESHOLD

TABLE III
SUMMARY OF DATA AND RESULTS. THERE ARE 138 TRACES, EACH OF 10 000
s. WE USE 80% OF THEM FOR TRAINING AND THE REMAINDER FOR TESTING

and compute the traces’ average entropy values to set the deci-
sion threshold for different types of players. The remaining 20%
of traces are used as test data to evaluate our conjecture. If the
average entropy of a test trace is higher than the threshold, we
label it as a human user; otherwise, we label it as a bot. As shown
in Table II, the average entropy values are ,

, , and for humans,
CR Bots, Eraser Bots, and ICE Bots, respectively. We set the
threshold at 8.95 to judge whether a trace is a bot or a human
user. The method can achieve 88.57% test accuracy, as shown
by the results in Table III. We need to emphasize that the de-
tection based on entropy computation is sensitive to the length
of input trajectories. We choose long enough traces (equal to
10 000 steps) so that the trace user starts to explore most of the

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 167

space and we can see the discriminant results.10 In Section IV,
to further improve the detection power of our approach, with
shorter trace inputs and higher detection accuracy, we propose
a dissimilarity-based method for robust bot detection.

IV. BOT DETECTION SCHEMES

Our objective is to analyze the behavior patterns hidden in
trajectories to distinguish between bots and human users. Based
on the discussion in the previous section, we can simply use
the average entropy as a feature, which yields a detection accu-
racy rate of 88.57%. In general, it is straightforward to consider
several features of trace sequences that have been suggested by
experts for bot detection. Chen et al. [29] recommended using
various features, such as on/off activity, pace statistics, path sta-
tistics, and turn information, as the feature set for classification.
They reported accuracy rates of 80%–90% for different combi-
nations of the features. The above features, including average
entropy, can also be combined to further enhance the classifica-
tion performance.

However, expert knowledge is expensive and sometimes un-
reliable or biased. Generally, feature extraction is a difficult task
if not an art. In this work, to detect bots from the trace inputs
automatically, we employ two approaches for feature extraction
and trajectory representation without the help of expert knowl-
edge. The approaches try to measure the dissimilarity of pair-
wise trajectories, and the pairwise dissimilarities are used to find
representatives in the new space. The representative points with
specific signatures in the space are labeled as bots.

The input is a trajectory , or a series of location coordinates,
in either a 2-D or 3-D space, i.e.,
up to time . Usually, represents the effectiveness of the de-
tection technique, or how quickly an alarm should be raised
about a bot or a user who is cheating. The key step is to transform
the trace data into a point in a new, probably low-dimensional
space called the representation space and solve the detection
problem in the space via a classification method.

We apply two dissimilarity measures and use a manifold
learning technique called Isomap [11] to find the trace repre-
sentation/embedding. Then, we adopt two methods, the -NN
algorithm and the support vector machine (SVM) model [30],
[31], forclassification in therepresentationspace.Followingcon-
vention, we treat bot traces as positive samples and human traces
as negative samples to form a binary classification problem.
Our bot detection algorithm comprises three parts: dissimilarity
measurement, trajectory representation, and bot detection via
classification. The first step measures the dissimilarities between
pairs of trajectories. We utilize two measures, one without and
one with temporal information. In the second step, Isomap is used
to find the low-dimensional embeddings of trajectories given the
pairwise dissimilarities. Then, given the embeddings in a low-di-
mensional space, the third step detects bots in the representation

10The data sets from The Frag Pipe map and Warehouse map include many
short trajectories from human users, therefore not appropriate to apply this en-
tropy-based detection method. In general, the choice of entropy threshold to
distinguish between human and bot users depends on the map layout. Different
maps may induce or cause players to react differently. Just like the examples
mentioned in the text, we can easily see different patterns from human and bot
traces in open space, or narrow corridors of the map. Roughly speaking, if a
map includes more of those regions, we expect to see larger gaps between the
entropy values computed from human and bot traces.

TABLE IV
NOTATIONS

space. The generic algorithm is shown in Algorithm 1. In the
following, we discuss the major components of the algorithm.

Algorithm 1: Generic algorithm for bot detection

Input: The new (unlabeled) trace seq. and a set of
labeled traces ,

Output: Label of

/* step 1: Dissimilarity Measurement

1 for in do

2 Compute dissimilarity [via (1) or (6)];

3 end

/* step 2: Trajectory Representation

4 Given a matrix , apply Isomap to find embeddings of
trajectories in a low-dimensional space;

/* step 3: Bot Detection via Classification

5 Given the low-dimensional embeddings, adopt classification
method -NN or smooth SVM (SSVM) for bot detection

Table IV summarizes the notations used in the remainder of the
paper.

168 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

A. Dissimilarity Measurement

The first goal of our algorithm is to find a measure to describe
the dissimilarity between two traces. We consider two cases.

1) No temporal information is considered. For instance, we
can consider the trace as a set of steps without
ordering.

2) We consider the whole trace, including the temporal infor-
mation, to compute the pairwise dissimilarity.

1) Without Temporal Information: In this case, we con-
sider the step information to detect bots. A step in a trace
is the vector , whose Euclidean step size is given
by . We then estimate the distribution of
the step size, i.e., the frequency counts of the step size after
discretization.11 The counts are collected in bins as

, based on the frequencies of the step sizes
from 0 to a large number. We assume that a frequency count
of step size 0 indicates a period of conversation, a rest period,
hiding from intense fire, or waiting for the arrival of opponents.
The resulting frequency vector can be used directly as input
for our machine learning framework; i.e., it can be combined
with classifiers for bot detection. However, in general, the
performance is not satisfactory due to the high dimensionality
of frequency vectors.

To avoid the curse of dimensionality [10], we adopt Isomap
[11] as a dimension reduction technique to find low-dimensional
embeddings of the frequency vectors and perform the classi-
fication task in the low-dimensional space. Isomap takes pair-
wise dissimilarity measures of input samples and outputs em-
beddings of those samples.

Given the step-size distributions, we compute their pair-
wise dissimilarity measure. In mathematics, given two
quantized distributions, and

, it is natural to use the KL diver-
gence [12]

as the dissimilarity measure. In general, the KL divergence is
not symmetric; however, we prefer a symmetric version

(1)

For simplicity, we can also use the Euclidean metric12

to measure the distance between two data points/distributions.
We use a symmetry matrix to store the dissimilarity mea-
sures (either or) between pairs of distribution vectors

11In the measure, we count step-size frequencies according to several dif-
ferent predefined ranges called “bin,” such as counting the number of step sizes
from 0 to 1 length unit, from 1 to 2 length units, and so on. The whole set of
step-size frequencies is also considered as a discretized version of the step-size
distribution.

12This is also the case when we transform the data via Isomap to a low-dimen-
sional Euclidean space, and the Euclidean metric is appropriate for such space.

obtained from two trajectories, where denotes the dissim-
ilarity between trace and trace .

2) With Temporal Information: Alternatively, we can
utilize the temporal information in the trace and employ
the Markov chain model for dissimilarity measurement. Let

denote the model of a trace sequence, where
the transition parameters and describe the mean and
the standard deviation of the step-size changes, respectively,
and and describe the mean and the standard deviation
of the angle changes, respectively.13 Based on the Markovian
property, between two step sizes and or coordinates in
three consecutive time stamps , , and , we assume
that

(2)

for step-size changes, and

(3)

for angle changes.
We study a metric from information theory for measuring the

dissimilarity between trajectories. In our design, each trace has
an associated model with a set of transition
parameters , and , decided by the trace. Given a
model , the log-likelihood of a trace can be written
as14

(4)

where is the likelihood function and is de-
fined by

(5)

That is, given the coordinates of previous two steps and ,
we first generate and based on (2) and (3), then we
know and and we can decide given the known
step size and angle from time to time . Given two
traces and and their associated models and , the
distance15 or dissimilarity between the traces will depend on
how well one trace is described by the model for the other trace.
First, given the model , we compute the code length of a trace

as a negative logarithm of the likelihood as

13In real cases, � and � are very close to zero.
14We assume that the uniform initial distribution � �� �� � and the proba-

bility can be ignored in the maximum likelihood computation.
15Note that we do not ensure triangle inequality in this case.

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 169

Note that does not have to be the associated model of the
trace . Therefore, we can define the distance between two tra-
jectories and as

(6)

where is a new trace formed by concatenating the traces
and , and is the associated model of the concatenated16

trace . In this way, for each pair of traces, we derive pair-
wise distance values, which will be used as input to find the
representation of the traces. The dissimilarity values of pairwise
traces are stored in a symmetric matrix . The matrix
or will in turn be input to Isomap in order to find the repre-
sentations/embeddings of the trajectories. We discuss the results
of choosing different dissimilarity measures in Section V.

Parameter Estimation for the Markov Chain: We assume
that the trace sequence for the step-size changes
and angle changes follows the Markovian property. As men-
tioned earlier, we use a Gaussian-distributed transition as the
transition function to approximate the step-size changes and
angle changes, which are centered at and and with vari-
ances and , respectively. The parameters can be estimated
directly from the sample means and variances of the related data
inputs. Given a trace, we can compute the differences between
consecutive step sizes as and estimate the
mean and the variance via the sample mean and the variance

. Similarly, for the angle changes, we can estimate and
via the sample mean and the variance .

B. Trajectory Representation

Trajectory representation seeks to represent a set of trajecto-
ries in a Euclidean space such that the Euclidean distance in the
space fully represents the relations between the trajectories. In
this study, we consider that two traces are similar if:

1) they both have small measurements in (1) or (6); or,
2) they are both similar to a third trace.
The second criterion means that two trajectories and

are friends if they have a common friend , even if they do
not have small values of or themselves. To find a
metric to satisfy these criteria, we adopt Isomap [11] as the rep-
resentation technique. The rationale behind this choice is that
there is a high degree of variance among the trace sequences of
human users and bots; therefore, it is difficult to propose a uni-
versally effective rule for detecting bots or identifying particular
behavior patterns from trace sequences. With the second crite-
rion, even if two trajectories are not highly similar, we can deem
them close to each other simply because they are both similar to
a third trajectory. A friendship that has such a transitive prop-
erty can help us determine the global distance between pairwise
trajectories.

The goal of Isomap is to find a representation in an intrinsic
space in which it tries to maintain the neighborhood relation-
ship between each pair of trajectories locally; however, glob-
ally, a geodesic distance between the two points/trajectories is

16We can treat � and � as virtually the same to generate similar models
between� or� . The only factor that makes a difference is the transition
at the concatenation point between � and � .

substituted to describe their distance/dissimilarity. Given a dis-
similarity matrix (or in our case), the Isomap
process can be divided into three steps. 1) Construct a neighbor-
hood graph by linking each pair of points that qualify as neigh-
bors. 2) Find the length of the shortest path between each pair
of points and take it as the approximation of their geodesic dis-
tance. 3) Take the pairwise (geodesic) distance as the input and
apply multidimensional scaling (MDS) to find the global Eu-
clidean coordinates of the points. The “optimal” dimensionality
for separating the different kinds of trajectories can be estimated
by finding the “elbow” point in the residual variance curve [11].

Figs. 4 and 5 show the results of applying Isomap17 given the
dissimilarity measures derived from the step size (without tem-
poral information) and from the Markov chain model (with tem-
poral information), respectively. The (green) circles indicate the
traces of human users, while the others are obtained from sev-
eral different bots. Among them, CR Bots (the cross symbols)
and the human players appear to have the highest variances,
but the ICE Bots exhibit relatively low variances. More impor-
tantly, data items with different labels are well separated. How-
ever, such discriminative results cannot be obtained if we use the
well-known principal component analysis (PCA) method [33]
for dimension reduction, as shown in Fig. 6. It is noteworthy
that the representation derived by the Markov-chain-based mea-
sure is visually better than the one derived by the step-size mea-
sure because it includes temporal information about the trace.
In Fig. 5, points/trajectories of the same type are clustered to-
gether, but that is not the case in Fig. 4. We believe that adding
temporal information provides a better representation of trajec-
tory behavior. Moreover, as we will show later, the classification
in the representation space derived by the Markov chain model
is more accurate than the one derived by the step size only. After
Isomap finds a low-dimensional representation of the data, we
can use any classification scheme, e.g., the -NN algorithm or
SVM, to label a new trace (i.e., either a bot or a human player).

C. Bot Detection via Classification

Given the trajectory representation, in principle, we can use
any classification or clustering method for bot detection. In this
study, we adopt SSVM, which tries to solve an unconstrained
minimization problem [34], and the -NN algorithm for most
of our evaluations. We assume that the trajectory representations

are located in an -dimensional space. Their associated la-
bels are denoted by .

1) -Nearest Neighbors: The -NN algorithm is one of the
oldest and most intuitive classification methods, and many ap-
plications demonstrate its competitive performance compared
to other classifiers (e.g., [35]). Under -NN, the class label of a
new trace is decided by the class labels of the traces surrounding
it. One of the keys to the successful application of -NN is the

17We only present data in 2-D for visualization purposes. In general, the de-
tection or classification task is executed in the space of intrinsic dimensionality.
The embedding produced by Isomap often suggests some meaningful insight for
the matter of understanding patterns from humans or bots, if the pattern can be
visualized in low-dimensional space. For instance, in this scenario, an axis may
indicate that the avatars turn smoothly or abruptly; or tend to go in a constant
step size or in a varied step size. Unfortunately, according to the traces superim-
posed on the Isomap results, due to the difficulty of visualizing the trace data, it
is not easy to find out what the axes mean in this scenario.

170 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 4. Based on step-size distribution, the trace representation (and the associated trace superimposed on the side) by Isomap, for traces from (a) The Edge map
and (b) The Frag Pipe map where a point represents a trace of a human user (green circle) or from a bot (others). The �- and �-axes are the first and second principal
coordinates [32] from Isomap. As the figure shows, the human data and the bot data are well separated. Classification in this space using �-NN or SVM (or SSVM)
can be performed with a high degree of accuracy.

Fig. 5. Based on Markov chain model and code length computation, the trace
representation (and the associated trace superimposed on the side) after Isomap,
where a point represents a trace of a human user (green circle) or from a bot
(others). The �- and �-axes are the first and second principal coordinates from
Isomap. Compared to Fig. 4, it seems that the traces from different player types
have well-clustered groups by the Markov-chain-based dissimilarity measure
(with temporal information) rather than the dissimilarity measure based on step
size (without temporal information).

choice of an appropriate metric. For instance, using KL diver-
gence in the original space of the step-size distribution is not
as effective as working on the representation space found by
Isomap.

2) Support Vector Machines: SVMs are well suited for
solving binary classification problems like bot detection. Theo-
retically, in a linear case, by selecting the separating hyperplane

Fig. 6. Based on step-size distribution, the data representation by PCA, where
the �- and �-axes represent the first and second principal components, respec-
tively. The points of human users and bots overlap and they are not distinguish-
able from each other.

that maximizes the margin between positive and
negative samples, we can obtain a classifier that minimizes the
generalization error [30], [31]. Specifically, finding an optimal
classifier is equivalent to minimizing a functional composed of
the training error term and the regularization term as follows:

for

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 171

where denotes the positive slack variables, and is
a positive parameter that controls the balance between the
training error and the margin maximization term. In a nonlinear
case, the kernel trick [36] can help us find a nonlinear sepa-
rating surface between positive and negative samples. Several
variants of the typical SVM model have been proposed; for
instance, the SSVM, which tries to solve an unconstrained
minimization problem instead [34]. In this study, we use
SSVM to evaluate our framework. We consider both linear
and nonlinear versions.

V. PERFORMANCE EVALUATION

Our experiment is composed of four parts. The first part eval-
uates different bot detectors in terms of the error rate, false posi-
tive rate, and false negative rate, and demonstrates the effective-
ness of our proposed methods. The second part assesses the de-
tection rates based on inputs of different length. In the third part,
we study the scenario where bot users try to counter a bot de-
tection algorithm by mimicking human behavior. We add some
noise to the bot input so that it looks similar to human input. The
experiment shows that our detectors are still robust in this situ-
ation. At last, we discuss the problem of bot detection crossing
different maps. Based on our result, the detection accuracies
have at most 1% difference between the detection in a single
map and the detection consisting of many maps.

To evaluate the performance, we use the detection error rate,
which is measured by a tenfold cross-validation procedure. In
other words, the whole data set is partitioned into ten subsets
of more or less equal size, with stratification.18 Then, nine of
the subsets are used for training and the tenth is reserved for
testing. The procedure is repeated ten times using different parti-
tions to obtain an average result. Based on the data set described
in Table I, there are 519 data items, of which 237 are positive
samples (bots) and 282 are negative samples (human). As men-
tioned earlier, the length of each sample is 1000 s in all our ex-
periments, unless otherwise specified (see Section V-B). Before
discussing the experiment results, we define the parameters used
in our evaluation.

a) Dissimilarity Measure Without Temporal Information:
For the measure that takes the step size as the input, the training
set is compiled by transforming each trace into a distribution of
step sizes, as described in Section IV. The distribution is dis-
cretized and partitioned into bins for each trace,19

where the bin height is the value of the probability mass function
or frequency counts; therefore, a data item is in a 201-dimen-
sional space. To apply the Isomap procedure, the neighborhood
graph is defined by considering the -NN of each
sample. Then, after dimension reduction to a low-dimensional
representation space (of dimensionality equal to five), we use
an SSVM, or simply -NN for classification (setting in
the representation space). In the original space, the number of
data items considered as neighbors should be limited (as
mentioned above) due to the possible curse of dimensionality;

18In other words, the set is divided into several groups that contain similar
percentages of positive and negative samples.

19That is, in the discrete case, the bins record the numbers of steps with length
from 0 to 1, from 1 to 2, and so on.

however, this can be relaxed to a larger number (as
mentioned) in a dimension-reduced space.

b) Dissimilarity Measure With Temporal Information: To
consider the temporal information, we input the whole trajec-
tory to a (first-degree) Markov chain model. Given two trajecto-
ries and their associated models, we use each model alternately
to describe the other model’s trajectory to find their dissimi-
larity. An SSVM or -NN with is adopted for the
classification. We discuss the performance of each approach in
Sections V-B–V-E.

A. Effectiveness of the Proposed Methods

Next, we evaluate our two dissimilarity measures by com-
bining with the -NN classifier and SSVM classifier, for bot de-
tection. We consider the following bot detection schemes: (1k)

-NN with KL divergence as the metric, given the frequency
vector of the step size; (1s) SSVM,20 also given the frequency
vector of the step size; (2k) -NN, applied in the low-dimen-
sional space, which is derived from Isomap with the step-size
input; (2s) Isomap followed by SSVM, with the step-size input;
(3k) Isomap followed by -NN, where the input consists of the
pairwise dissimilarities based on the code length described by
the Markov chain; and (3s) Isomap followed by SSVM, also
with Markov chain modeling. Note that Isomap is only used
to find the representation space in the series (2x) (i.e., 2k or
2s) and (3x). Series (2x) is based on the dissimilarity measure
derived from the step-size inputs, i.e., without temporal infor-
mation; on the other hand, series (3x) is based on the Markov-
chain-based dissimilarity measure, i.e., with temporal informa-
tion. The -NN algorithm is considered a naive classification
method, whereas SSVM is deemed a sophisticated method.

Our experiment results demonstrate that, in terms of perfor-
mance, -NN combined with Isomap (manifold learning) is
comparable to any other methods, while -NN is very efficient
in terms of time complexity compared to SVM (or SSVM).
Second, the approach with Isomap performs better than the one
without Isomap. Third, the approach that considers temporal
information, i.e., the input with the code length derived by the
Markov chain model, outperforms all the other methods.

Tables V and VI show the performances of several bot de-
tection methods. Both -NN and SSVM are applied with and
without Isomap; and we use the linear and nonlinear versions
of SSVM. Most of the classification methods yield error rates21

of less than 2%; among them, Isomap combined with nonlinear
SSVM achieves perfect classification results for inputs with and
without temporal information. Overall, the methods that employ
Isomap yield better results than the methods that do not use it.
Moreover, the methods based on the input with temporal infor-
mation outperform those without temporal information in the
input. Finally, the methods based on SSVM outperform those
based on -NN.

20As mentioned previously, we adopt SSVM instead of SVM because it
achieves a better performance.

21As mentioned earlier, Isomap combined with linear SSVM may not be ef-
fective because the decision boundary tends to be nonlinear in a low-dimen-
sional space. For ease of visualization, we do not show the result of Isomap
combined with linear SSVM in subsequent graphs because it is not comparable
to the results of the other methods.

172 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 7. Results obtained by six detection schemes based on the step-size input, given trajectories of different length: (a) error rates, (b) false positive rates, and
(c) false negative rates (compared to Table V). The results are similar to those reported in Section V-A: 1) the methods combined with Isomap outperform those
without it; and 2) the SSVM-based methods outperform those based on �-NN, except for the false positive results.

Fig. 8. Given different lengths of trajectories, the results obtained by two detection schemes, based on the Markov-chain-described code length: (a) error rates, (b)
false positive rates, and (c) false negative rates (compared to Table VI). The results are similar to those in Fig. 7: 1) the methods combined with Isomap outperform
those without it; and 2) the SSVM-based methods outperform those based on �-NN. Moreover, the methods that consider temporal information (using the Markov
chain model) are more effective than those that do not include the information (i.e., they use the step-size input).

TABLE V
THE RESULTS BASED ON SIX DIFFERENT DETECTION SCHEMES, GIVEN THE

STEP-SIZE INPUTS, I.E., NO TEMPORAL INFORMATION ARE CONSIDERED. THE

AVERAGE RESULTS OF THE FALSE POSITIVE RATES, FALSE NEGATIVE RATES,
AND ERROR RATES, AFTER TEN REPEATS OF THE TENFOLD CROSS-VALIDATION

PROCEDURE. OVERALL, THE PERFORMANCE IS ENHANCED IF ISOMAP IS

APPLIED. THE ONLY EXCEPTION IS THE POOR PERFORMANCE WHEN APPLYING

LINEAR SSVM IN A LOW-DIMENSIONAL SPACE. THE DECISION BOUNDARY

TENDS TO BECOME NONLINEAR IN A LOW-DIMENSIONAL SPACE; THUS,
LINEAR SSVM MAY NOT BE APPROPRIATE IN THIS CASE

B. Using Trajectories of Different Length

Since we want to detect bot users as early as possible, we
can analyze the performance when only a partial input trace is
given, rather than wait for a whole input sequence. As shown in
Figs. 7 and 8, one method may be superior to another for inputs
of different lengths, but the results are similar to those reported
in the previous section.

1) The methods that use Isomap outperform those that do not
use it.

TABLE VI
THE RESULTS BASED ON THREE DIFFERENT DETECTION SCHEMES GIVEN

THE INPUTS OF THE MARKOV CHAIN-DESCRIBED CODE LENGTH, I.E., WITH

TEMPORAL INFORMATION. THE AVERAGE RESULTS OF THE FALSE POSITIVE

RATES, FALSE NEGATIVE RATES, AND ERROR RATES, AFTER TEN REPEATS

OF THE TENFOLD CROSS VALIDATION. COMPARED TO, ONCE AGAIN, WE

FIND THAT THE PERFORMANCE FOR SERIES (1X) IS ENHANCED BY APPLYING

ISOMAP. MOREOVER, WITH TEMPORAL INFORMATION INCLUDED, THE

PERFORMANCE IS BETTER THAN THAT OF THE CLASSIFICATION RESULT

BASED ON THE STEP-SIZE INPUTS (NO TEMPORAL INFORMATION)

2) The methods that consider temporal information (Markov
chain model) outperform those that do not include it (step-
size input).

3) The SSVM-based methods outperform the -NN-based
methods.

C. With Noise

The -NN and SSVM methods combined with Isomap out-
perform those without it, even if noise is added to the bot trajec-
tories (a common camouflage strategy) to counter the detection
algorithm.

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 173

Fig. 9. Histograms of the step sizes for trajectories of (a) bot users and (b) human users. A large number of constant size steps are found in bot trajectories, but
not in human trajectories. However, after adding some Gaussian noise in (a) to (a1), we obtain a histogram that is hard to distinguish, at least visually, from that
for a human user.

Fig. 10. Some white noise is added to the trajectories to test the robustness of
the detection methods based on step-size input. The �-axis shows the standard
deviation going higher in the rightward direction. Mostly, the methods combined
with Isomap perform better than those methods without it.

The step sizes of common bots have very regular distribu-
tions, as shown in Fig. 9(a), which is the histogram of the step
size derived from a CR Bot’s trajectory. That is, a bot tends to
maintain a constant step size (around 32 in this case), which is
not usually observed in human trajectories. Such features could
easily be identified by a smart detector. Therefore, it is under-
standable that a bot user will try to avoid detection by adding
some white noise to the step size. Our detector can deal with
this kind of camouflage. Fig. 10 shows the results when dif-
ferent levels of white noise are added to the bot’s trajectory
in the step-size domain. After adding the noise, the distribution
may not be visually distinguishable from a regular human trajec-
tory [as shown by comparing Fig. 9(a1) and (b)]. Nevertheless,
the experiment shows that our method can detect bot users via
the step-size dissimilarity measure with a very low error rate.
Once again, in most cases, the methods with Isomap perform
better than those without it. Moreover, in terms of accuracy,
SSVM-based approaches usually outperform -NN-based ap-
proaches in terms of accuracy.

When temporal information is considered, the dissimilarity
measure based on the Markov chain model is even more effec-
tive than the approach that only considers step-size inputs. With
input trajectories equal or longer than 1000 s, all bots are de-
tected with 100% accuracy.

D. Crossing Different Maps

Sometimes human movement may be restricted by the en-
vironment around him/her. For example, in a game, imagining
that we are in a tunnel, then we can only move forward or back-
ward in such a condition, and both of our flanks are suffocated
by the surroundings. We would like to ensure that a model built
for one map can be used for another map. We proceed to study
this problem.

In this section, we would like to test the influence of the traces
from different maps to our framework. We use traces from three
maps which are very dissimilar to each other. The collected data
information is in Table VII. The map The Edge is the simplest,
containing some plazas and tunnels. The map The Frag Pipe
contains many tunnels, and if the players encounter others, they
have no cover and their movement is highly restricted by the
surroundings we mentioned before. The map Warehouse has
a very complicated structure and contains many floors. In this
map, players can easily get lost in the map due to the com-
plex landform. Three traces collected from the three maps are
shown in Fig. 11 for visualization purpose. In the experiments,
we collect traces from different maps together for the tenfold
cross validation, and the validation test is carried out without
acknowledging the source of the trace. As the experiment re-
sults show in Fig. 12, the performance is still good and not much
affected by the cross-map effect. The accuracy from the model
trained by traces from different maps has a difference of up to
1%, from the accuracy from the model built for a single map,
and the performance of the approach combining Isomap and
nonlinear SVM remains the best compared to other approaches.
We should also emphasize that our model is based on features
computed from local movements, such as step size, step-size
changes, and angle chances. Those statistics are less likely to
be influenced by map layout, compared to the statistics based
on long-term movements. Therefore, in terms of keeping sim-
ilar performance across different maps, the proposed method is

174 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 11. Human traces from three maps. Obviously, the terrain of the three maps is totally different. The Edge has the simplest landform which is particularly
designed for novice. The Frag Pipe has many tunnels. Warehouse has a complicated landform and players can easily get lost in the map.

Fig. 12. Results crossing different maps, by six detection schemes based on the step-size input, given trajectories of different length: (a) error rates, (b) false
positive rates, and (c) false negative rates. The results are similar to previous results, about 1% difference between them at most (compared to Fig. 7).

TABLE VII
DATA SUMMARY FOR CROSS-MAP EXPERIMENT

favored over other methods that need features from global or
long-term movements.

VI. CONCLUSION

We have proposed a trajectory-based approach for detecting
game bots. Specifically, we employ Isomap to find an appro-
priate space for trajectory representation, and then use -NN or
SSVM to perform supervised classification. The evaluation re-
sults demonstrate that, based on real-life Quake 2 traces, our
approach can achieve a detection accuracy of 98% or higher on
a 700-s trace. We believe that it is generally difficult to simulate
human players’ behavior when they are controlling game char-
acters. Humans may not be totally logical; however, most of the
time they obey rules or follow strategies that may not be easily
sensed by bot users or automated programs. To some extent, the
results of our study support this conjecture. The experiment re-
sults show that the proposed method can distinguish between
human players and automated programs. Thus, we believe that
the method merits further investigation by the game community.

ACKNOWLEDGMENT

The authors would like to thank anonymous referees for their
constructive criticisms.

REFERENCES

[1] K.-T. Chen, J.-W. Jiang, P. Huang, H.-H. Chu, C.-L. Lei, and
W.-C. Chen, “Identifying MMORPG bots: A traffic analysis ap-
proach,” EURASIP J. Adv. Signal Process., vol. 2009, 2009, DOI:
10.1155/2009/797159, article id 797159.

[2] P. Golle and N. Ducheneaut, “Preventing bots from playing online
games,” Comput. Entertain., vol. 3, no. 3, p. 3, 2005.

[3] J. Dibbell and M. Video, “The life of the Chinese gold farmer,” The New
York Times, Jun. 17, 2007 [Online]. Available: http://www.nytimes.
com/2007/06/17/magazine/17lootfarmers-t.html?ex=1339732800&en
=a6282d1ddf608fc1&ei=5088&partner=rssnyt&emc=rss

[4] K.-T. Chen and L.-W. Hong, “User identification based on game-play
activity patterns,” in Proc. 6th ACM SIGCOMM Workshop Netw. Syst.
Support Games, 2007, pp. 7–12.

[5] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA:
Using hard AI problems for security,” in Proc. Eurocrypt, 2003, pp.
294–311.

[6] P. Hingston, “A Turing test for computer game bots,” IEEE Trans.
Comput. Intell. AI Games, vol. 1, no. 3, pp. 169–186, Sep. 2009.

[7] T. P. Novak, D. L. Hoffman, and A. Duhachek, “The influence of
goal-directed and experiential activities on online flow experiences,”
J. Consumer Psychol., vol. 13, no. 1, pp. 3–16, 2003.

[8] S. Ila, D. Mizerski, and D. Lam, “Comparing the effect of habit in
the online game play of Australian and Indonesian gamers,” in Proc.
Australia New Zealand Marketing Assoc. Conf., 2003.

[9] S. F. Yeung, J. C. S. Lui, J. Liu, and J. Yan, “Detecting cheaters for
multiplayer games: Theory, design and implementation,” Consumer
Commun. Netw. Conf., vol. 2, pp. 1178–1182, 2006.

[10] C. M. Bishop, Pattern Recognition and Machine Learning. New
York: Springer-Verlag, 2006.

[11] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, Dec. 2000.

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 175

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
ed. New York: Wiley-Interscience, 2006.

[13] H. Kim, S. Hong, and J. Kim, “Detection of auto programs for
MMORPGS,” in Proc. Adv. Artif. Intell., 2005, pp. 1281–1284.

[14] C. Thurau, C. Bauckhage, and G. Sagerer, “Learning human-like
movement behavior for computer games,” in Proc. 8th Int. Conf.
Simul. Adaptive Behavior, 2004, pp. 315–323.

[15] C. Thurau, C. Bauckhauge, and G. Sagerer, “Combining self orga-
nizing maps and multilayer perceptrons to learn bot-behavior for a
commercial game,” in Proc. GAME-ON Conf., 2003, pp. 119–123.

[16] C. Thurau and C. Bauckhage, “Towards manifold learning for
gamebot behavior modeling,” in Proc. Int. Conf. Adv. Comput. Enter-
tain. Technol., 2005, pp. 446–449.

[17] C. Thurau, T. Paczian, and C. Bauckhage, “Is Bayesian imitation
learning the route to believable gamebots?,” in Proc. GAME-ON North
America, 2005, pp. 3–9.

[18] C. Thurau and C. Bauckhage, M. Merabti, N. Lee, and M. Overmars,
Eds., “Tactical waypoint maps: Towards imitating tactics in FPS
games,” in Proc. 3rd Int. Game Design Technol. Workshop Conf.,
2005, pp. 140–144.

[19] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards parameter-
free data mining,” in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Disc.
Data Mining, 2004, pp. 206–215.

[20] H.-K. Pao and J. Case, “Computing entropy for ortholog detection,” in
Proc. Int. Conf. Comput. Intell., 2004, pp. 89–92.

[21] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang,
“An information-based sequence distance and its application to whole
mitochondrial genome phylogeny,” Bioinformatics, vol. 17, no. 2, pp.
149–154, 2001.

[22] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and
Its Applications, 2nd ed. New York: Springer-Verlag, 1997.

[23] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation
of time series, with implications for streaming algorithms,” in Proc.
8th ACM SIGMOD Workshop Res. Issues Data Mining Knowl. Disc.,
2003, pp. 2–11.

[24] [Online]. Available: http://www.idsoftware.com/
[25] Id Software: Id History [Online]. Available: http://www.idsoftware.

com/business/history/
[26] M. Malakhov, CR Bot 1.15, 2000 [Online]. Available: http://arton.

cunst.net/quake/crbot/
[27] R. R. Feltrin, Eraser Bot 1.01, 2000 [Online]. Available: http://down-

loads.gamezone.com/demos/d9862.htm
[28] ICE Bot 1.0, jibe, 1998 [Online]. Available: http://ice.plan-

etquake.gamespy.com/
[29] K.-T. Chen, A. Liao, H.-K. K. Pao, and H.-H. Chu, “Game bot detec-

tion based on avatar trajectory,” in Proc. Int. Conf. Entertain. Comput.,
2008, pp. 94–105.

[30] V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed.
New York: Springer-Verlag, 1999.

[31] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining Knowl. Disc., vol. 2, no. 2, pp. 121–167,
1998.

[32] T. F. Cox and M. A. A. Cox, Multidimensional Scaling, 2nd ed.
London, U.K.: Chapman & Hall/CRC, 2000.

[33] H. Hotelling, “Analysis of a complex of statistical variables into prin-
cipal components,” J. Edu. Psychol., vol. 24, pp. 417–441, 1933.

[34] Y.-J. Lee and O. L. Mangasarian, “SSVM: A smooth support vector
machine for classification,” Comput. Optim. Appl., vol. 20, no. 1, pp.
5–22, 2001.

[35] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor Methods
in Learning and Vision: Theory and Practice. Cambridge, MA: MIT
Press, 2006.

[36] B. Schölkopf and A. Smola, Learning With Kernels Support Vector Ma-
chines, Regularization, Optimization and Beyond. Cambridge, MA:
MIT Press, 2002.

[37] K.-T. Chen, H.-K. K. Pao, and H.-C. Chang, “Game bot identifica-
tion based on manifold learning,” in Proc. ACM NetGames, 2008, pp.
21–26.

Hsing-Kuo Pao received the B.S. degree in math-
ematics from National Taiwan University, Taipei,
Taiwan and the M.S. and Ph.D. degrees in computer
science from New York University, New York.

From 2001 to 2003, he was a Postdoctorate
Research Fellow at the University of Delaware,
Newark, and later he joined Vita Genomics as
a Research Scientist. In 2003, he joined the De-
partment of Computer Science and Information
Engineering, National Taiwan University of Science
and Technology, Taipei, Taiwan, as an Assistant

Professor. His current research interests are machine learning, and its various
applications including user behavior analysis, trajectory analysis, intrusion
detection, pattern recognition, and bioinformatics.

Kuan-Ta Chen (S’04–M’06) received the B.S. and
M.S. degrees in computer science from National
Tsing-Hua University, Hsinchu, Taiwan, in 1998 and
2000, respectively, and the Ph.D. degree in electrical
engineering from National Taiwan University,
Taipei, Taiwan, in 2006.

Currently, he is an Assistant Research Fellow at
the Institute of Information Science and the Research
Center for Information Technology Innovation (joint
appointment) of Academia Sinica, Taipei, Taiwan.
His research interests include Internet measurement,

quality-of-experience (QoE) management, network security, and online games.
Much of his recent work focuses on human factors in network systems,
including QoE measurement, user perception and behavior modeling, and
QoE-aware system design.

Dr. Chen is a member of the Association for Computing Machinery (ACM)
and IICM.

Hong-Chung Chang received the M.S. degree
in computer science and information engineering
from National Taiwan University of Science and
Technology, Taipei, Taiwan, in 2008.

Currently, he is a Researcher at the Institute for In-
formation Industry (III), Taipei, Taiwan. His interests
include game bot detection, user behavior in online
games, trajectory analysis, online games, etc.

