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Abstract. We address the problem of automatically designing maps for
first-person shooter (FPS) games. An efficient solution to this procedural
content generation (PCG) problem could allow the design of FPS games
of lower development cost with near-infinite replay value and capability
to adapt to the skills and preferences of individual players. We propose
a search-based solution, where maps are evolved to optimize a fitness
function that is based on the players’ average fighting time. For that
purpose, four different map representations are tested and compared.
Results obtained showcase the clear advantage of some representations
in generating interesting FPS maps and demonstrate the promise of the
approach followed for automatic level design in that game genre.
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1 Introduction

First-person shooter (FPS) games are video games where the player views the
game world from the perspective of the character she is controlling, and where
the gameplay involves both navigating into a complex three-dimensional envi-
ronment and engaging in combat using weapons of different types. FPS games
are currently one of the world’s most popular video game genres, with no signs
of the popularity abating. Call of Duty, Halo, Battlefield and other similar game
series sell millions of games each year. Still, developers are plagued by the rising
costs of developing content for such games, leading to shorter games and anxi-
ety about creatively and thematically diverging from the mainstream. A typical
modern FPS game has less than ten hours worth of single-player campaign and
just a few multiplayer maps, despite costing tens of millions of dollars to develop.

Procedural content generation refers to the automatic creation of game con-
tent, where “content” is interpreted widely: levels, characters, sound, items, veg-
etation, and terrain are all viewed as content during the development process.
While procedural content generation in different forms has been around for more
than two decades, it has mostly been applied to peripheral game elements, and
usually only in the form of random generation within specific bounds. In contrast,



generation of “core” content such as maps and levels, and generation of content
to optimize particular aspects of gameplay or optimize for individual player
capabilities, is an active research topic with the results so far considered too im-
mature for commercial games. Recently, a search-based approach to PCG [11],
called experience-driven PCG has gained currency [13]. In this approach, evolu-
tionary algorithms or other stochastic search-based optimization algorithms are
used to search for content according to some fitness function meant to capture
relevant aspects of player experience. Both the representation of game content
and the design of the fitness function present interesting research challenges.
Some attempts to meet these challenges can be seen in recent work on evolving
tracks for racing games [9], rules for board games [1], weapons for space shoot-
ers [4], levels for platform games [8] and maps for real-time strategy games [10].
Computational intelligence techniques have been applied to FPS games before,
but mostly to create NPC behaviour of various kinds. Some examples are ex-
periments in optimizing the parameters of standard bot scripts [2], imitating
the playing style of human players [3] and evolving complete subsumption-based
controllers for bots [6]. FPS maps have been subject to analysis by game design
researchers, presenting several ideas on design metrics which could be useful for
PCG [7], but have to our best knowledge not been automatically synthesized
before.

The research described in this paper is novel both in that search-based tech-
niques are used to generate content for an FPS game for the first time, and in
that complete playable FPS maps are generated for the first time. The paper is
structured as follows: in the next section, we present the Cube 2 game engine
which will be used for the experiments. We then present our general approach to
evolving FPS maps, including the fitness function. This is followed by descrip-
tions of the various map representations, and of the experiments we carry out
to compare their suitability for evolving playable maps. A concluding section
discusses the next steps to take in order to refine this technique.

2 Cube 2

Cube 2: Sauerbraten [12] is a free open-source FPS game that supports both
single- and multi-player gameplay. Cube 2 comes with several graphical charac-
ter models, a set of weapons and a large number of maps. The engine underlying
Cube 2 is fast and sophisticated, allowing smooth rendering of high-polygon
environments, approximating the visuals found in commercial games (see Fig-
ure 1). Technically, the game engine is based on a 6 directional height-field in
octree world structure which also supports lightmap-based lighting with accu-
rate shadows, dynamic shaders, particles and volumetric explosions. Cube 2 also
supports a simple but complete configuration/scripting language which allows
customization of all menus and most other aspects of the game, and which makes
it easy to build “mods” of the game.

One of the standout features of the engine is the capability for in-game ge-
ometry editing and also multi-player cooperative editing. The integrated map



Fig. 1. Screenshots from Cube 2: Sauerbraten

editor is very powerful: it allows the user to build and edit new shapes, to ap-
ply textures and to add objects of various materials (such as water, lava and
glass), and to add light sources, among several other actions. Since Cube 2 is
open source, the map editor itself can be modified and extended in whatever way
necessary. This feature is crucial for our purposes, as we need to inject evolved
maps back into the game, and it is one of the main reasons we chose to use Cube
2 rather than a better-known commercial FPS game. The other main reason is
that the game engine allows us to run the game in “headless” mode, i.e. without
visualization, where it can be speed up to run as fast as the processor permits.

3 Evolving Maps for an FPS Game

In this paper we apply evolutionary algorithms to evolve maps for a multi-player
FPS game. A multi-player FPS is a game where several players (humans and/or
bots) fight on the same map. Several game modes are possible with differences
in rules; in the most basic mode, “deathmatch”, the rules are simple: when a
player character is killed, it will spawn in another point of the map after a few
seconds. The game terminates after a fixed amount of time, and the player with
most frags (i.e. the player which killed more opponents) wins the game.

A FPS map usually consists of a series of rooms and corridors plus several
spawn-points and resource items (either weapons or bonuses). Maps may have
several different levels with floors above and below each other, and features such
as stairs, ramps and elevators for moving vertically between floors. In this work
we will focus on maps with only a single floor.

The goal of this work is to evolve maps with potential for interesting game-
play. It is generally accepted that some FPS maps allow for more interesting and
deeper gameplay than others, for example by rewarding skillful use of complex
tactics, and by forcing players to vary their tactics so that they cannot use the
same patent trick all the time to win. It is generally accepted that such maps are
of better quality than others. Indeed, much work goes into exquisite balancing



of those maps that are available as paid downloads for popular FPS games, to
make sure that no single strategy will dominate the map. For brevity, we will in
the following refer to maps with potential for interesting gameplay as promising
maps.

3.1 Fitness function

Naturally, it is hard to design an accurate estimator of the promise of a map,
as this will require predicting the preferences of a great number of players (e.g.
as in [8]). In the future, we plan to devise more complex fitness functions based
on data-driven modelling of player capabilities and preferences. For now, we will
settle on a simple theory-driven fitness function.

We assume that the promise of a map is directly linked to the fighting time
of the player, which is defined as the duration from the moment in which the
player starts to fight an opponent to the moment in which the player is killed.
Since during an entire match the player will die and spawn multiple times, we
can compute the average fighting time value for the game per player, T%. A
small T value means that a player gets killed very quickly after starting to
fight an opponent. If the T value is large it means that after the player first
gets damage in a fight, she survives and can prolong the fight because the map
affords possibilities to escape, to hide, to find health bonuses or better weapons.
Since an FPS map presents several features that, from a strategic point of view,
can be exploited to engage the player in longer and more interesting fights the
Tt value appears to be a good measure of the promise of a map.

The best way to assess the T’ value of a map would be to play several matches
with human players on that map and collect the statistics, yielding an interactive
fitness function according to the classification in [11]. Unfortunately, it is not
practical to use human players in our experiments because it would require them
to play thousands of matches (in the future, this might be a possibility using
massively multiplayer games, similar to the approach taken in [4]). Instead we
simulated matches of 10 minutes among 4 bots and we measured the average T’
value across all bots, T_f, yielding a simulation-based fitness function according
to the same classification.

The complete fitness function has another component in addition to the T’
value: the free space of the map, S. We explicitly want our fitness to promote
the generation of larger maps since very small maps do not leave enough space
for the placement of weapons and spawn-points, leading to unrealistic values of
T. It is worth mentioning that the maximum size of a map is bounded and that
in the best maps generated (see Section 5) S contributes to less than 20% of the
total fitness value. Given the above, the complete fitness function of a map is as
follows:

f=Tr+S (1)

where Ty is measured in milliseconds and it is an integer greater than 0, and S
represents the number of free cells in the map and is bounded between 0 and
4096.



To evaluate maps using a simulated match we had to address two main
points: generation of way-points and acceleration of the game. While for the
latter the solution was as simple as disabling the graphical rendering (enabling
the simulation of a 10 minutes match in about 10 seconds using a computer with
an 3.00 Ghz Intel Core 2 Duo processor), for the first we had to implement a way-
point placement algorithm. The bots available in Cube 2, like the ones in many
commercial games, depend on a list of way-points to navigate in a given map.
On that basis, points are represented in a graph on which bots apply the usual
A* algorithm to move between bonuses, weapons and enemies. Therefore, it was
necessary to generate the way-points on the fly for each new map. Unfortunately,
the game gives no support for automatic generation of way-points as they are
usually placed by the human designer of the map. To overcome this problem we
implemented an algorithm for way-point generation that follows these steps: (i)
compute the free cells of the map; (ii) place a way-point on every free cell; (iii)
connect each way-point with its four neighbors (up, down, left, right) if there
are no obstacles between them; (iv) align every resource on the map to the grid
of the way-points.

4 Map Representations

After the fitness function, the other important design choice in search-based
PCG is how to represent the content. The representation must allow for the
expression of a wide range of interesting content, but also enable the search
algorithm to easily find content with high fitness. In this paper, we propose and
compare four different representations for FPS maps.

First, we need to distinguish between the genotype and phenotype for these
maps. The phenotype is isomorphic to an actual map in the game. For all map
representations, the phenotype structure is the same: a matrix of 64 x 64 cells.
Each cell is a small piece of the map with a size suitable to contain a player
character. Each cell can be either a free space or a wall (with a fixed height).
Each free space can be empty or can contain a spawning point or a resource item
(weapon or health bonus). The phenotype is saved in a text file and loaded in
the game for playing using a specific loader that we implemented in Cube 2.

The structure of the genotype, on the other hand, is different for each rep-
resentation. The genotype is what is evolved by the genetic algorithm. Each
representation comes with a procedure for constructing a phenotype from the
genotype; the simpler this procedure is, the more direct the representation is
said to be. When a genotype is evaluated, the following happens:

1. the genotype is used to build the phenotype;

2. then the phenotype yields a specific map for Cube 2 and a simulated match
starts in that map;

3. the statistics collected during the match are used to compute the fitness.

The four representations are described below in order of decreasing directness.



The most direct representation is named Grid and assumes that the initial
configuration of the map is a grid of walls. In particular a 9 by 9 grid is used
to divide the map into 81 squares. Each of the wall segments of a square can be
removed to create rooms and corridors. The genome represents which of these
wall segments are active (on) or not (off). According to the Grid representation
scheme each gene encodes the state of two wall segments of the cell: the one on
the top and the one on the right. Thus, each gene can take four possible values:
0, if both wall segments are off; 1, if only the top wall segment is on; 2, if only
the right wall segment is on; and 3, if both segments are on.

The second, less direct representation is named All-White. It assumes that
the initial map is empty (with walls only at the borders) and searches for fit maps
by adding wall elements on the empty space. The genome encodes a number of
wall blocks, N,, (N,, equals 30 in this paper), each represented by three values,
< z,y,l >, where z and y define the position of the top-left corner of the wall
and [ represents the length of the wall. If [ > 0, the resulting wall is aligned to
the x-axis; otherwise it is aligned to the y-axis. According to this representation,
the width of each wall block equals 1.

The third representation is named All-Black and is, in a sense, the exact
opposite to the All-White representation. This representation starts with an
initial map full of wall blocks, and gradually adds free spaces in search of fitter
maps. The genome encodes a number of free spaces of two types: the arenas and
the corridors. Arenas are square spaces defined by the triplet < x,y, s >, where
x and y represent the coordinates of the center of the arena and s represents
the size of it. Corridors are rectangular-shaped free spaces with width fixed to
3 cells. Corridors are encoded in the same way as wall blocks via the three
values of < x,y,l >. In the experiments presented in this paper, the All-Black
representation builds on 30 corridors and 5 arenas.

The most indirect representation is called Random-Digger and as the All-
Black representation, it builds maps on an initial map configuration which is
full of wall blocks. The genome encodes the policy of a very simple agent that
moves around and frees up the space in every cell it visits, in a way reminiscent
of turtle graphics. The resulting map is a trace of the path the agent followed
for a fixed number of steps. The agent starts at the center of the map and its
policy is represented by four probability values: < p¢, pr, pi, p» > where py is the
probability of going forward along the current direction; p, is the probability of
turning right; p; is the probability of turning left; and p, is the probability of
visiting an already visited cell. The last probability is very important since it
controls the exploration rate of the digger.

The first three representations can generate maps with some parts that are
not reachable from the all other parts of the map. There are two main approaches
to overcome this problem. The first approach attempts to repair the map so that
it becomes fully connected. This solution has several drawbacks: it is complex
to implement, it can be computationally expensive and it may heavily modify
the initial shape of the map. The second approach focuses on simply removing
the unreachable parts from the final map. In this paper we follow the second



approach by identifying all cells that were reachable from the center-point of the
map and then remove all cells that are not reachable.

Before a complete Cube 2 map can be generated from the phenotype, we
need to add spawning points, weapons and health bonuses. We do this through a
simple uniformly-distributed heuristic as follows: (i) the matrix of the phenotype
is divided into squared blocks; (ii) for each block the number of free cells is
computed; (ii) if this number is bigger than a given threshold two spawn-points
and one resource item (a weapon or a health bonus) are placed inside the block.

5 Experiments

To evolve the maps, we applied a simple genetic algorithm with standard op-
erators: tournament selection with tournament size 2, single point crossover,
mutation rate of % (where n is the length of the genome), mutation range 0.2
(following a uniform distribution) and a crossover probability of 0.2. The pa-
rameters of the genetic algorithm were set empirically. We applied the genetic
algorithm with a population size of 50 individuals and let it run for 50 genera-
tions. Each evolutionary run took approximately 6 hours to completion and the
experiment was repeated 10 times for each representation.

Figures 2, 3, 4 and 5 display the four highest performing maps evolved for
each representation. The 2D image of each map illustrates walls as black seg-
ments, spawn-points as blue dots, and resource items (either weapons or health
bonus) as green dots. Figure 6 illustrates how one of the best map evolved appear
rendered in 3D when they are loaded in Cube-2. To test for significance, we run
a t-test on the highest performances obtained via the 10 GA runs among all rep-
resentations. According to the results: (i) All-White generates maps which are
statistically better than All-Black and Random-Digger (p-value < 0.001 in
both comparisons); (ii) All-White evolved better maps than Grid but the dif-
ference is not statistically significant (p-value = 0.141); (iii) Grid maps are sta-
tistically better than All-Black and Random-Digger maps (p-value < 0.001
in both comparisons); and (iv) the maps generated with All-Black are statis-
tically better than the Random-Digger maps (p-value < 0.001). In addition,
we performed experiments to test for the sensitivity of the fitness value by eval-
uating a map multiple times. Even though the variance of the fitness can be
rather large and dependent on the map structure, the initial placement of bots
and weapons and bot behavior the fitness order among the four representations
is maintained and the statistical effects hold.

As can be seen from the results obtained, all the four representations are able
to generate playable maps. Each representation allows the emergence of some
peculiar features that strongly characterize the evolved maps. The Random-
Digger representation generates maps with many long corridors and few small
arenas. The All-Blacks representation instead, generates several bigger arenas
while corridors are usually shorter and may present dead ends. The Grid rep-
resentation generates very interesting maps with a high degree of symmetry.
Finally, the All-White representation generates the best maps according to the
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(b) f = 14530

(c) f=

Fig. 3. Best Maps Evolved using Representation All-Black
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Fig. 4. Best Maps Evolved using Representation Grid
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Fig. 5. Best Maps Evolved using Representation Random-Digger




(a) 3D map overview (b) First-person perspective

Fig. 6. One of the best evolved map (f = 21931) loaded in the game Cube 2.

considered fitness function. The high fitness values of All-White maps are jus-
tified by the coupling of many narrow passages with big arenas which generate
many small spaces for a player to hide and trap its opponent or pick health
bonuses after a fight.

It is worth noticing that the 2D top-down map images of Figures 2, 3, 4
and 5 may be misleading for some readers. For instance, the All-White maps
are less symmetrical and aesthetically pleasing than the maps of the Grid rep-
resentation; thus, one may infer the inferiority of the All-White maps with
respect to their gameplay value. However, this aesthetic notion is reverted once
the map is viewed and played from a first person perspective (see Figure 6) as
it is confirmed by our preliminary results from a user study.

6 Conclusions and Future Work

We have devised four different representations for first-person shooter maps,
and a fitness function for evaluating their potential for interesting gameplay. We
have also performed several experiments to verify that we can evolve playable
FPS maps using these representations and the fitness function. Further, we have
used the fitness function to compare the promise of maps evolved with each of
the representation. From our results, it seems that the All-White and Grid
representations have clear advantages in this respect.

Several legitimate objections can be raised against our fitness function, and
each of them suggest avenues for future work. One objection is that it depends
on the control logic of the default bots in Cube 2. This control logic has not been
presented in the paper, and is indeed not entirely transparent from the source
code. Using custom-designed bots would permit us to tune our fitness function
in more detail, and explore new fitness functions related to the present one,
such as the performance of a numerically or tactically superior team against an
inferior. Adjusting the bots’ behaviour to match human gameplay styles might



also improve the fitness function; clues to as how to do this might be taken
from the submissions to the 2k BotPrize competition [5]. Another objection is
that we have not yet validated the efficacy of our fitness function with user
studies, and can therefore not claim that our measure of potential for interesting
gameplay corresponds with human players’ judgments. User studies are currently
our top priority, and our preliminary results suggest that players do prefer maps
with higher fitness. Following the principles presented in [13,8] we also plan
to study the effect of map design on several emotional states of players, and
synthesize models of player experience from player behavior and FPS map design.
These models can then be used to construct adaptive FPS games, that create
appropriate maps to match the skills and preferences for particular players (or
groups of players) so as to create an optimally engaging gameplay experience.
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